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Abstract

Elastic guided wave interactions with various defects are explored for investigating defect characterization
possibilities by using a hybrid boundary element method (BEM) in combination with an elastodynamic boundary
integral equation and the Lamb wave normal mode expansion technique. The BEM code accuracy is veri®ed based
on energy conservation and available bench marking data for guided wave scattering problems. Through two-

dimensional (2-D) parametric studies for an arbitrarily shaped defect, from a surface breaking crack model to a
round surface defect, a waveguide cross-section including a defect is locally selected as a model for a given incident
mode, frequency and a speci®c set of material properties. Mode re¯ection and transmission factors are numerically

calculated to evaluate mode sensitivities and to obtain the potentially good classi®cation features. It turns out that
the guided wave scattering pro®les show quite di�erent behaviors as functions of incident mode, frequency, defect
shape and size in providing us with enough rich feature extraction information for defect classi®cation and sizing

analysis. The theoretical analysis can be used to establish e�cient guidelines for both data acquisition and feature
selection in a pattern recognition analysis program of study. Sample results are presented. 7 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Elastodynamic studies on elastic wave propagation in solid media have great importance in solid
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mechanics and structural analysis in helping us understand the dynamic response of the media. This

work is particularly useful in the ultrasonic nondestructive evaluation ®eld, which is based on

the use of elastic waves. Investigations of elastic wave propagation and scattering is inevitable, if

one is to interpret correctly a signal from a scatterer. In wave mechanics, it is a well-known fact

that interference among the large numbers of longitudinal and transverse modes re¯ected from a

thin structural boundary can generate elastic guided wave modes propagating along a particular

geometry (Lamb, 1889; Viktorov, 1967; Achenbach, 1975). A guided wave generated in a plate-like

structure is called a Lamb wave. This occurs when an incident wavelength is comparable to

structure thickness.

Over the last decade, the use of guided waves for inspecting large structures has been of great concern

to many elastic wave researchers due to both the potential for a more sensitive and faster inspection.

Hence, there have been vigorous attempts to investigate various guided wave aspects for NDE purposes

(Rose et al., 1994; Cho and Rose, 1996a). However, complicated mode conversion phenomena in guided

wave scattering problems can be potentially useful in establishing key features in quantitative guided

wave inspection for defect classi®cation and sizing. Compared to conventional boundary value problems

for guided wave propagation, theoretical analysis of guided wave scattering from defects is extremely

di�cult because of the complex multi-mode conversion phenomena and arbitrary shaped boundary and

defect geometries. Unlike elastic bulk wave scattering, guided wave scattering involves not only the

scattering of an incident mode but also those of all other possible propagating modes existing at a

certain frequency through mutual interference. Therefore, studies on guided wave scattering problems

are relatively rare (Cho and Rose, 1996b; Auld and Tsao, 1977; Rokhlin, 1980; Koshiba et al., 1984;

Zhang et al., 1988; Datta et al., 1991; Al-Nassar et al., 1991; Alleyne and Cawley, 1992; Karim et al.,

1992), compared to the more well-known bulk wave scattering problems (Schafbuch et al., 1993;

Kobayashi 1987; Rizzo et al., 1985; Zhang and Achenbach, 1988; Rezayat et al., 1986). Hence, multi-

mode conversion phenomena found in a Lamb wave interaction with a defect is still not fully

understood.

Recently, the authors presented the various mode conversion curves of a Lamb wave edge re¯ection

in a steel plate by the hybrid BEM (Cho and Rose, 1996b). According to the edge re¯ection BEM study

(Cho and Rose, 1996b), it was proven that the hybrid BEM can be successfully applied to guided wave

scattering and readily extended to guided wave scattering from a defect with improved numerical

e�ciency over domain type techniques.

The Lamb wave mode conversion from arbitrary defects has been studied both theoretically and

numerically (Rokhlin, 1980; Koshiba et al., 1984; Datta et al., 1991; Al-Nassar et al., 1991, Alleyne

and Cawley, 1992; Karim et al., 1992). An adequate theoretical and numerical analysis of the

propagation and scattering of ultrasonic waves is essential for the optimization of quantitative

nondestructure testing and also for the development of new techniques. However, the range of pure

theoretical solutions remains limited and many practical ultrasonic problems including guided wave

scattering, are analytically unsolvable due to arbitrary boundary conditions and geometrical

complexity (Achenbach, 1992; Bond, 1990). For this reason, a numerical approach has become a

useful tool for solving ultrasonic scattering problems with the help of various numerical integration

schemes. A comparison of the capabilities and limitations of the various numerical models can be

found in some previous works (Brebbia et al., 1985; Achenbach, 1992; Bond, 1990).

As in other engineering problems, the ®nite element method (FEM) has been the most popular

simulation technique for ultrasonic scattering because of the simplicity of the numerical formulation.

Even in a guided wave problem, a numerical approach can become more powerful than in a bulk wave

problem since a waveguide must be de®ned in a bounded domain, being closely associated with

geometrical complexity. The boundary value problems for obtaining dispersion curves of either an
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unusually shaped waveguide or a multi-layered waveguide were investigated with the aid of FEM
(Talbot and Przemieniecki, 1975).

In 1984, Koshiba used FEM for solving fundamental symmetric Lamb wave scattering problems
in an elastic plate and con®rmed the validity of the use of FEM by comparing numerical results
with analytical solutions of a Variation Method (Koshiba et al., 1984). He considered only
symmetric propagating modes in a simply shaped waveguide joint. Al-Nassar et al. calculated
re¯ection and transmission factors of scattered ®elds due to a normal rectangular strip weldment in
a plate by FEM (Al-Nassar et al., 1991). Alleyne and Cawley combined time domain FEM
solutions with Fourier transform methods to quantify Lamb wave scattered ®elds (Alleyne and
Cawley, 1992). The scattering of elastic waves in a plate by inclusions was studied within a ®nite
zone by a solution matching technique of the hybrid FEM between a near and a far ®eld (Karim
et al., 1992).

Even though FEM has been used broadly for elastodynamic problems, it sometimes requires a
greater e�ort for mesh generation and computing time than boundary type simulation techniques,
due to the nature of its domain type formulation. Consequently, it is sometimes very tedious to
apply FEM to more complex shaped waveguide problems. However, most of the previous studies
on Lamb wave interactions with a defect were based on the use of the FEM (Talbot and
Przemieniecki, 1975; Koshiba et al., 1984; Datta et al., 1991; Al-Nassar et al., 1991; Alleyne and
Cawley, 1992; Karim et al., 1992). Also, focus has been on investigating a scattering pro®le from
a ®xed defect type rather than comparing di�erences in scattering patterns with respect to defect
shape change, say defect sharpness for the purpose of defect characterization. Therefore, e�cient
and advanced numerical methods are needed for studies of guided wave scattering and defect
characterization in a waveguide.

Recently, advantages of the boundary integral equation method over other domain type modeling
techniques were discussed by many researchers (Brebbia et al., 1985; Achenbach, 1992; Bond, 1990).
The technique has been broadly used in solving various bulk wave scattering problems (Schafbuch et
al., 1993; Kobayashi, 1987; Rizzo et al., 1985; Zhang and Achenbach, 1988; Rezayat et al., 1986).
Even though there were many BEM studies in elastodynamics, most were limited to cases of bulk
wave scattering rather than guided wave applications. As far as the authors know, boundary element
works related to guided wave scattering problems are rare. Recently, the authors proposed the hybrid
BEM based on a combination of elastodynamic interior boundary integral equations and the Lamb
wave normal mode expansion technique for the Lamb wave edge re¯ection study (Cho and Rose,
1996b).

The boundary element formulation is mathematically more sophisticated than the FEM due to the
singularities of the corresponding fundamental solutions (Brebbia et al., 1985; Kobayashi, 1987;
Brebbia et al., 1984). However, once the singular integration schemes of the fundamental solution is
achieved (Kobayashi, 1987; Kitahara et al., 1989; Rezayat et al., 1986; Lachat and Watson, 1976;
Brebbia et al., 1984), the BEM can be a more e�cient numerical technique over a domain type
technique. It can easily manage unbounded domains and bounded domains of arbitrary geometry just
by simply discretizing a boundary and not a whole domain. In this paper, the hybrid BEM used in
the edge re¯ection study (Cho and Rose, 1996b) is applied in analyzing Lamb wave interactions with
surface defects with di�erent sharpness and depth. Arti®cial elliptical defects were also constructed in
order to represent surface wastage while rectangular defects were constructed to represent surface
open breaking defects. The re¯ection and transmission factors are numerically calculated as a function
of incident mode, defect sharpness and depth, in order to evaluate mode sensitivity and to obtain
physical information for Lamb wave mode conversion. The practical purpose of the work is to
eventually optimize data collection procedures via proper mode input in order to tackle the inverse
problem of defect classi®cation and sizing.
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2. Theoretical background

2.1. The conventional elastodynamic interior boundary integral formulation

From Fig. 1, the elastodynamic interior boundary integral equation of a modeling zone in a plate can
be derived from the equation of motion through a weighted residual method as follows (Kobayashi,
1987; Brebbia et al., 1984),

cki��x�ui��x� �
�
G
t�ki��x, �w�ui dG �

�
G
u�ki��x, �w�ti dG on G �1�

where cki=1/2, if the boundary G is smooth, ui and ti denote surface displacement and traction,
respectively.

The displacement and traction fundamental solution, u �ki and t �ki of a Fourier transformed
elastodynamic domain are given as follows (Kobayashi, 1987; Brebbia et al., 1984),

u�ki�x, w� � A�Û1dki ÿ Û2r, kr, i � �2�
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�
dÛ2
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where a position vector between a unit point load and a ®eld point and coe�cients a and A are de®ned
as follows

Fig. 1. The hybrid BEM modeling zone with constant elements in a plate.
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j �r j�j �xÿ �w j a � 1�for 2D� A � i=4G�for 2D�
The fundamental vectors in (2) and (3) are,

Û1 � H
�1�
0 �kTr� ÿ 1

kTr
H
�1�
1 �kTr� �

�
kL

kT

�2
1

kLr
H
�1�
1 �kLr� �4�

Û2 � ÿH �1�2 �kTr� �
�
kL

kT

�2

H
�1�
2 �kLr� �5�

where kL is the longitudinal wave number, kT the transverse wave number and H (1)
1 and H (1)

2 are the
Hankel functions of the ®rst kind of order 1 and 2, respectively.

Discretizing the boundary G with N constant elements as shown in Fig. 1 (for the pth element)"
1
2 0
0 1

2

#�
u2qÿ1
u2q

�
�
XN
q�1

�
Gq

�
u�2pÿ1, 2qÿ1 u�2pÿ1, 2q
u�2p, 2qÿ1 u�2p, 2q

��
t2qÿ1
t2q

�
dGq ÿ

XN
q�1

�
Gq

�
t�2pÿ1, 2qÿ1 t�2pÿ1, 2q
t�2p, 2qÿ1 t�2p, 2q

�

�
�
u2qÿ1
u2q

�
dGq �6�

( p=1, 2, 3, . . . ,N ).

The eight-point Gaussian quadrature procedure is used for the o�-diagonal regular numerical
integration and the Cauchy principal value is analytically calculated for the diagonal singular
integration, respectively (Kobayashi, 1987; Kitahara et al., 1989; Rezayat et al., 1986; Lachat and
Watson, 1976; Brebbia et al., 1984). Eq. (6) can also be expressed in terms of matrix notation through
the matrix globalization by changing a point loading location over the entire waveguide boundary G,

HU � GT on G �7�
where U and T are the boundary total displacement and traction vector. H and G are the boundary
integral terms of the traction and displacement fundamental solutions.

2.2. Hybrid boundary element formulation for a Lamb wave scattering problem

In an elastic waveguide, the incident displacement ®eld u I of the pth mode propagating along the
positive x1-axis can be expressed in terms of amplitude a p, the normalized displacement model function
u p and pth wave number k p by factoring out the time harmonic term,

uI � u p � a p �u p � a p

�
�u p
x 1

�u p
x 2

�
eik

px 1 �8�

The normalized modal displacement and traction functions can be obtained from the boundary value
problem of the Lamb wave propagation (Viktorov, 1967; Achenbach, 1975; Cho and Rose, 1996b). The
Lamb wave modal functions for symmetric and anti-symmetric modes derived through the eigenvector
problem of a plate are as follows,

(symmetric mode)
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ûx 1
� ux 1

A1
� �ik cos klx2 � kta cos ktx2�ei�kx 1ÿot� �9�

ûx 2
� ux 2

A1
� �ÿkl sin klx2 ÿ ika sin ktx2�ei�kx 1ÿot� �10�

ŝx 1x 1
� sx 1x 1

A1
� �fÿl�k2 � k2l � ÿ 2Gk2g cos klx2 � 2Gikkta cos ktx2�ei�kx 1ÿot� �11�

ŝx 1x 2
� sx 1x 2

A1
� �ÿ2Gikkl sin klx2 � G�k2 ÿ k2t �a sin ktx2�ei�kx 1ÿot� �12�

(anti-symmetric mode)

ûx 1
� ux 1
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ûx 2
� ux 2
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ŝx 1x 1
� sx 1x 1
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ŝx 1x 2
� sx 1x 2

A2
� �2Gikkl cos klx2 � G�k2 ÿ k2t �b cos ktx2�ei�kx 1ÿot� �16�

and

a � A4

A1
� 2ikkl sin kld=2

�k2 ÿ k2t � sin ktd=2
�17�

b � A3

A2
� ÿ2ikkl cos kld=2

�k2 ÿ k2t � cos ktd=2
�18�

Consequently, the normalized modal functions for the nth propagating mode are calculated based on the
ratio of the square root of an in-plane average power between the mode and an incident mode
(Viktorov, 1967; Achenbach, 1975; Cho and Rose, 1996a, b),

�U
n

x 1
� Nn

I � ûnx 1
�19�

�U
n

x 2
� Nn

I � ûnx 2
�20�

�snx 1x 1
� Nn

I � ŝnx 1x 1
�21�

�snx 1x 2
� Nn

I � ŝnx 1x 2
�22�

where Nn
I denotes the normalized factor based on the power ratio between the nth mode and an incident
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mode and the in-plane average power (Viktorov, 1967; Achenbach, 1975; Cho and Rose, 1996a, b) is,

Nn
I �

���������
�P

I

x 1

�P
n

x 1

vuut �23�

�Px 1
� ÿ1

2
real

"
ÿ io

�d=2
ÿd=2
fŝx 1x 1

ûx 1
� ŝx 1x 2

ûx 2
gdx2

#
�24�

Then, the normalized surface traction t can be de®ned as the product of the outward normal n on a
boundary and the stress modal functions.

The scattered ®eld induced by the pth incident wave mode could contain J and L numbers of
independent normal modes on the left and right boundaries, G1 and G2, respectively, at a certain
frequency through the mode conversions on the scatterer surface. These modes can be found in the
dispersion curves of Fig. 2. For example, at fd = 1.0 MHz mm, both J and L are 2, representing two
independent propagating modes, A0 and S0. Therefore, under the assumption of an isotropic linear
elastic waveguide, they can be linearly superposed to express the resulting scattered ®elds in elastic
waveguides with geometrical discontinuities in the following manner:

uBS �
XJ
j�1

b j �u j �
XJ
j�1

b j

8<: �u j
x 1

�u j
x 2

9=;eÿik
jx 1 �backward scattering on G1� �25�

uFS �
XL
l�1

bl �ul �
XL
l�1

bl

8<: �ulx 1

�ulx 2

9=;eik
lx 1 �forward scattering on G2� �26�

Where the superscripts, `BS' and `FS', denote the back and forward scattering and b j and b l are the jth
mode re¯ected and the lth transmitted amplitudes on G1 and G2, respectively.

The total displacement ®eld can be de®ned as the superposition of incident and scattered ®elds on G1

Fig. 2. The phase velocity dispersion curve of a steel plate.
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and G2

u � uI � uBS�FS � on G1�on G2� �27�

Discretizing G1 and G2 with k and m nodal points, respectively, as shown in Fig. 1, the following is
obtained

fugG1

2k�1 � � �u�I2k�Jfa pdpj eik
jx 1gJ�1 � � �u�BS

2k�Jfb j eÿik
jx 1gJ�1 on G1 �28�

fugG2

2m�1 � � �u�I2m�Lfa pdpl eik
lx 1gL�1 � � �u�FS

2m�Lfbl eik
lx 1gL�1 on G2 �29�

where

� �u�I, BS �
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2�

377777777777777777775
2k�J

on G1

and [u- ]FS can also be expressed in terms of m and L on G2.

In a similar way, the total boundary tractions can be de®ned by a linear superposition of the
normalized traction modal functions for the incident and scattered ®elds,

ftgG1

2k�1 � ��t�I2k�Jfa pdpj eik
jx 1gJ�1 � ��t�BS

2k�Jfb j eÿik
jx 1gJ�1 on G1 �30�

ftgG2

2m�1 � � �t�I2m�Lfa pdpl eik
lx 1gL�1 � � �t�FS

2m�Lfbl eik
lx 1gL�1 on G2 �31�

where
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on G1

and [t-]FS can also be expressed in terms of m and L on G2.

Rearranging (28) and (29) with respect to the scattered amplitudes b j and b l,

fb j eÿik
jx 1gJ�1 � � �uÿ1�BS

J�2kfugG1

2k�1 ÿ � �uÿ1�BS
J�2k� �u�I2k�Jfa pdpj eik

jx 1gJ�1 on G1 �32�

fbl eÿik
lx 1gL�1 � � �uÿ1�FS

L�2mfugG2

2m�1 ÿ � �uÿ1�FS
L�2m� �u�I2m�Lfa pdpl eik

lx 1gL�1 on G2 �33�

where [u-ÿ1] denoted the generalized complex inverse matrix of [u- ]; [u-ÿ1]=([u-�]T[u- ])ÿ1[u-�]T and [u-�]T

denotes the transpose of the complex conjugate of [u- ] (Lancaster and Tismenetsky, 1985).

Substituting (32) and (33) into (30) and (31),

ftgG1

2k�1 � � �t�I2k�Jfa pdpj eik
jx 1gJ�1 � ��t�BS

2k�J� �uÿ1�BS
J�2kfugG1

2k�l ÿ � �t�BS
2k�J� �uÿ1�BS

J�2k� �u�I2k�Jfa pdpj

eik
jx 1gJ�1 on G1 �34�

ftgG2

2m�l � � �t�FS
2m�L� �uÿ1�FS

L�2mfugG2

2m�l on G2 �35�

Finally, we obtain 2k and 2 m relations between boundary tractions and displacements on the left and
right cross-sectional boundaries of a waveguide, respectively, instead of 2k and 2 m boundary
conditions. Substituting (34) and (35) into (7) and rearranging (7) with traction free boundary
conditions on the top and bottom surfaces of a plate,

fC g2N�1 � �A�2N�2NfX g2N�1 �36�

where {C } is the constant vector, [A ] is the coe�cient matrix made of [H ] and [G ] matrices components
and {X } the unknown vector containing the boundary values of total boundary displacement ®elds, {u }.

When the total ®elds are obtained, the unknown backward and forward scattered amplitudes can be
determined from (25) and (26). Consequently, the jth mode re¯ection and the lth mode transmission
coe�cients R jp and T lp can be calculated by dividing the scattered amplitudes by the pth incident
amplitude, a p

R jp � b j=a p on G1 �37�
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T lp � bl=a p on G2 �38�
where R jp and T lp are the jth mode re¯ection and the lth mode transmission coe�cients induced by the
pth incident Lamb wave mode.

2.3. Miscellaneous computation aspects

The BEM software is formulated in a 2-D frequency domain. The program also includes some
auxiliary routines for auto meshing of the plate boundary and for wave structure calculations of both
incident and scattered ®elds at a given frequency. The material properties for a steel used in the BEM
simulations are the longitudinal wave velocity CL=5.94 mm/ms, the transverse wave velocity
CT=3.2 mm/ms and density r=7.8 g/cm3. Plate thickness is ®xed as one for convenience, so the input
frequency represents directly a corresponding frequency time thickness value on the dispersion curve. To
convince us of the accuracy of the technique based on the energy conservation concept, the error
involved in the analysis can be estimated by the deviation of the total re¯ected and transmitted energies
from the incident energy. Both constant and quadratic elements successfully represent analytical wave
structures without any signi®cant di�erent in particle displacement calculations. Therefore, the constant
element will be employed in further case studies.

Fig. 3. BEM convergence test with respect to the model length L for A0 ( fd = 1.5 MHz mm) incidence to a surface defect: L

[mm].

Fig. 4. The problem statement for A1 Lamb wave mode interaction with a square defect.
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The distance between a re¯ector and cross-sectional boundaries can also be a critical factor in the
accuracy of a hybrid formulation. Consequently, the model length L in Fig. 1 needs to be maintained
long enough in order to meet the far ®eld scattering conditions. Then, counting only the propagating
modes with real wave numbers in linear superposition is su�cient for reasonable accuracy (Cho and
Rose, 1996a, b; Koshiba et al., 1984; Karim et al., 1992). Fig. 3 represents the convergence of re¯ection

Fig. 5. A comparison between the BEM and the previous FEM studies (Alleyne and Cawley, 1992): (a) h/d=1/3; (b) h/d=1/2; (c)

h/d=2/3.
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and transmission factors with an increase of the distance, L/2, between a re¯ector and the vertical cross-
sectional boundary. With reasonable model length L, both re¯ection and transmission factors are nearly
independent of the model size.

3. Numerical results and discussions

3.1. Comparison with the previous solutions for Lamb wave scattering

As a simple case of guided wave scattering, re¯ection from a free edge in a semi-in®nite plate was
already successfully solved by the present method (Cho and Rose, 1996a, b). It was found that the trend
in all re¯ection factor curves of edge re¯ection were overall identical to that in the previous works for
glass (Cho and Rose, 1996a, b). Also all data points satisfy the energy conservation rule fairly well
within about a 5% error bound. In the following, another benchmarking hybrid BEM simulation for a
sample Lamb wave scattering problem due to a square defect is carried out and compared with the
available ®nite element data (Alleyne and Cawley, 1992). Hence, the same material properties and defect
geometry used in the previous work (Alleyne and Cawley, 1992) are employed; the longitudinal wave
velocity is 5.96 mm/ms, the transverse wave velocity 3.26 mm/ms and the density 8.0 g/cm3. The second
symmetric Lamb wave mode, A1, interacts with three square defects of di�erent depths of h/d=1/3, 1/2
and 2/3 under the frequency sweeping condition between fd= 2.3 to 2.6 MHz mm. The plate thickness
is ®xed as one and other defect geometry parameters, w and h, are readily determined from Fig. 4 for
each case.

The transmission factors of the A1 incident mode are calculated by the hybrid BEM code and plotted
together with the previous FEM results (Alleyne and Cawley, 1992) in Fig. 5. From the FEM work
(Alleyne and Cawley, 1992), the FEM transmission data are blown up and carefully read for use in

Fig. 6. A guided wave sensitivity study for variation of defect shape at a ®xed incident frequency (incident mode: S0/A0 at fd =

1.0 MHz mm).
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Fig. 5. Because neither the FEM nor the presented BEM data is a closed form solution, rather an
approximate numerical solution, the data point can be slightly di�erent in Fig. 5, depending on the
mesh pro®les, like total number of elements and the way to distribute the elements. There is also some
inevitable error in reading the FEM data point from the previous work (Alleyne and Cawley, 1992).

Nevertheless, in Fig. 5, good agreement is achieved in the trend of transmission variation as well as in
the direct comparison of each data point between the present hybrid BEM study and the previous FEM
work (Alleyne and Cawley, 1992). With about 400 to 500 boundary nodal points along the whole

Fig. 7. The variations of re¯ection and transmission with respect to the aspect ratio change of an elliptical surface defect for A0

( fd=1.0 MHz mm) incidence (50% depth through the thickness, h=0.5).
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boundary in Fig. 5, the BEM results match quite well with those of the FEM study, reproducing
consistently, those key data points like the minima at fd=2.55 and 2.4 MHz mm for h/d=1/3 and 1/2,
respectively. Through these patch tests, it is shown that the hybrid BEM code developed in this study
can be successfully applied to general Lamb wave scattering problems with arbitrary shaped defects with
a reasonable error bound.

Fig. 8. The variations of re¯ection and transmission with respect to the aspect ratio change of an elliptical surface defect for S0 ( fd

=1.0 MHz mm) incidence (50% depth through the thickness, h=0.5).
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3.2. The Lamb wave mode conversion studies with respect to defect sharpness

When an incident mode is scattered by a certain type of defect, the incident energy is redistributed
into various multi-scattered modes at a given fd value on the dispersion curve via a mode conversion
phenomena. Re¯ection and transmission factors obtained by BEM will be plotted with a variation of
incident frequencies for various defect shapes in order to ®nd the best change of defect detection by

Fig. 9. Variations of re¯ection and transmission with respect to an incident frequency change for a sharp surface defect (A0 inci-

dence s/h=0.2, h=0.5, 50% depth through the thickness).
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greatest changes in mode conversion. The e�ect of defect sharpness is investigated by changing the
aspect ratio of s/h from 0.2 to 5 for a certain incident mode as shown in Fig. 6.

In Fig. 6, s and h denote half of the defect width and depth, respectively. Incident modes, S0 and A0
at fd= 1.0 MHz mm are chosen. The defect surface is assumed as an elliptical contour with a di�erent
aspect ratio, s/h. This contour can be mathematically de®ned by the equation of an ellipse and divided
with 60 to 70 constant boundary elements while other ¯at boundaries have 150 to 200 elements. The
crack depth is ®xed at 0.5, 50% of the waveguide thickness. The BEM results for T (transmission) and
R (re¯ection) of these two modes with respect to s/h are compared with each in Figs. 7 and 8.

At fd = 1.0 MHz mm, the incident energy can be scattered backward and forward from a defect,

Fig. 10. Variations of re¯ection and transmission with respect to an incident frequency change for a sharp surface defect (S0 inci-

dence s/h=0.2, h=0.5, 50% depth through the thickness).
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being associated with only two possible scattered modes, A0 and S0. As shown in Figs. 7 and 8, there is
enough variation of R and T with respect to s/h change to be able to select a data acquisition scheme
that might be used in classi®cation analysis. In both cases of A0 and S0 incidence, if s/h is bigger than
4.0, the transmission factor of an incident mode is dominant, reaching one, since the mode conversion
behavior is expected to become mild due to an increase of crack tip bluntness. Finally, mode conversion
converges to a stable stage of a tapered waveguide with smoothly varying thickness in the case of s/h=
4.0. Generally speaking, the re¯ection and transmission of an incident mode show overall the inverse

Fig. 11. Variations of re¯ection and transmission with respect to an incident frequency change for a round surface wastage (A0

incidence s/h=3.0, h=0.5, 50% depth through the thickness).
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trend for energy conservation. It is also observed that the model conversion behavior is overall
proportional to defect sharpness. Because each point on the dispersion curves provides a di�erent
vibrational pattern; a di�erent displacement distribution, a di�erent mode conversion is expected by a
sweeping frequency. Now, incident frequency will be varied between fd = 0.1 and 1.5 MHz mm,
following two dispersion curves of the incident A0 and S0 modes for a sharp defect and a round
wastage with s/h=0.2 and 3.0, respectively. As seen in Figs. 9±12, there is a signi®cant di�erence in the
variations of re¯ection and transmission factors with an increase of incident frequency between those

Fig. 12. Variations of re¯ection and transmission with respect to an incidence frequency change for a round surface wastage (S0

incidence s/h=3.0, h=0.5, 50% depth through the thickness).

Y. Cho, J.L. Rose / International Journal of Solids and Structures 37 (2000) 4103±41244120



two di�erent defects with s/h= 0.2 and 3.0, respectively. For a sharp defect with s/h= 0.2 subjected to
S0 incidence, the incident S0 mode transmission and re¯ection monotonically decreases and increases,
respectively, with an fd increase, as shown in Fig. 10, whereas the A0 incidence shows only slight
changes in Fig. 9. For a round defect with s/h = 3.0, in the case of the S0 incidence, the transmission
and re¯ection of the incident mode, S0, are dominant over the entire frequency sweeping range in
Fig. 12. However, compared to Fig. 10, the trend is quite di�erent from the case of a sharp defect. In
Fig. 12, the transmission and re¯ection of the S0 mode have minimum and maximum sensitivities,
respectively, around fd=0.6 MHz mm showing nearly the parabolic variation up to fd=1.0 MHz mm.

Fig. 13. Variations of re¯ection and transmission with respect to a depth variation of a sharp surface defect for S0 ( fd=1.0 MHz

mm) incidence (s=0.05, d=1.0).
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Consequently, variations of re¯ection and transmission of an incident mode are quite di�erent
depending on both defect sharpness and incident mode selection, whereas those of the minor modes are
mostly a�ected by only defect sharpness. For example, forward and backward scattering behaviors of
secondary modes like S0 and A0 incidence and A0 from S0 incidence are very similar to each other;
despite the incident mode di�erence between A0 and S0 in both cases of a sharp defect and a round
wastage. However, there is a remarkable change depending on defect sharpness between s/h = 0.2 and
3.0, as seen in Figs. 9 and 11 and Figs. 10 and 12.

Fig. 14. Variations of re¯ection and transmission with respect to a depth variation of a sharp surface defect for A0 ( fd=1.0 MHz

mm) incidence (s=0.05, d=1.0).

Y. Cho, J.L. Rose / International Journal of Solids and Structures 37 (2000) 4103±41244122



3.3. The Lamb wave mode conversion studies with respect to defect depth

A sharp defect with s = 0.05 subjected to either A0 or S0 incidence at fd = 1.0 MHz mm is chosen
for the defect depth study. The defect depth varies between h/d=0.1 and 0.9. Figs. 13 and 14 show the
re¯ection and transmission for both primary (incident) and secondary (converted) modes under S0 and
A0 incidence, respectively. As seen in Figs. 13 and 14, re¯ection and transmission for a secondary mode
monotonically increase with defect depth, because the larger re¯ector surface creates more mode
conversion. However, after reaching their maximum, the secondary mode scatterings show a tendency to
decrease with respect to an increase of defect depth. Since the problem converges to the edge re¯ection
subjected to an incident model, it generates only the incident mode re¯ection due to the symmetric
re¯ection. Maximum mode conversion occurs when a sharp defect propagates up to about 65% of wall
thickness, in both cases of A0 and S0 incidence.

4. Conclusions

Hybrid BEM based on a combination of the elastodynamic interior boundary integral equation and
the normal mode expansion technique were applied to a study of Lamb wave scattering due to surface
defects. Numerical details on a hybrid formulation were also discussed. The accuracy of the hybrid
BEM formulation on the guided wave scattering problems was satisfactory in terms of energy
conservation; the BEM patch test results also show good agreement with the benchmarking FEM data.
It turns out that the hybrid BEM can successfully solve the multi-mode conversion phenomena found in
a guided wave scattering problem. The present method is also capable of handling a geometrical
discontinuity in a more e�cient manner over a domain type technique. Finally, the guided wave
scattering data can be obtained as a function of defect sharpness, depth, incident mode and frequency.
Based on a unique scattering pattern from a defect predicted by the BEM, guided wave potential for
defect characterization study was explored.
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